
LIBGRX

A 16/256 color graphics library for DJGPP

User's Manual

Written by:
Csaba Biegl

August 10, 1992

LIBGRX graphics library user's manual
Abstract
LIBGRX is a graphics library for DJGPP or Turbo C programs. (The Turbo C version was tested
using TC++ 1.01) Currently it supports VGA (32768, 256 or 16 colors), EGA (16 colors),
8514/A (256 colors) and S3-based (256 colors) cards. Planned future improvements include
support for Hercules cards as well. It is upward compatible with the graphics library in DJGPP
(the C part, no C++ classes). It can use the same drivers as the graphics library in DJGPP or
it can work with a new driver format supporting programmable number of colors as well.

Data types, function declarations
All public data structures and graphics primitives meant for usage by the application
program are declared/prototyped in the header files (in the 'include' sub-directory):

GRDRIVER.H graphics driver format specifications
MOUSEX.H cursor, mouse and keyboard handling
GRX.H drawing-related structures and functions
GRXFILE.H file formats and file access routines
GRXFONT.H format of a font when loaded into memory

Setting video modes
Before a program can do any graphics drawing it has to configure the display adapter of the
PC for the desired graphics mode. It is done with the 'GrSetMode' function as follows:
#ifdef __cplusplus
 void GrSetMode(int which,int width=0,int height=0,int colors=0);
#else
 void GrSetMode(int which,...);
#endif

The 'mode' parameter can be one of the following constants, declared in "grx.h":
typedef enum {
 GR_80_25_text,
 GR_default_text,
 GR_width_height_text,
 GR_biggest_text,
 GR_320_200_graphics,
 GR_default_graphics,
 GR_width_height_graphics,
 GR_biggest_noninterlaced_graphics,
 GR_biggest_graphics,
 GR_width_height_color_graphics
} GR_graphics_modes;

The 'GR_width_height_text' and 'GR_width_height_graphics' modes require the two optional
size arguments, and the 'GR_width_height_color_graphics' mode requires all three optional
arguments. A call with any other mode does not require any of the optional arguments.

NOTE: the 'GR_width_height_color_graphics' mode is a new mode supported only if: (1) you
have a new format graphics driver (see the accompanying documentation in the file
"DRIVERS.DOC"), and (2) you have a recent (version 1.06, dated after the middle of April
1992) copy of GO32 which knows how to deal with the new driver format.

New format graphics drivers operating in the proper environment (see above) can provide a
table of the supported text and graphics modes using:
void GrGetDriverModes(GR_DRIVER_MODE_ENTRY **ttable,GR_DRIVER_MODE_ENTRY **gtable)

LIBGRX graphics library user's manual
The arguments 'ttable' and 'gtable' should be addresses of pointers to the
'GR_DRIVER_MODE_ENTRY' structure defined in the include file "grdriver.h". Upon return the
pointer variables will point to two arrays of these structures, one for the text modes, the
other for graphics. The 'GR_DRIVER_MODE_ENTRY' structure has the following fields:
typedef struct {
 unsigned short width;
 unsigned short height;
 unsigned short number_of_colors;
 unsigned char BIOS_mode;
 unsigned char special;
} GR_DRIVER_MODE_ENTRY;

The first four structure members should be obvious, but the 'special' field may deserve some
explanation. It is non-zero if the driver does some special "tricks" to put the card into the
desired mode. An example might be the 43 row EGA text mode: for this first the "standard"
80x25 text mode is set up and then the character generator is re-loaded with a smaller font.
If the 'special' field is zero then the driver simply invokes the INT 10 function 0 BIOS routine
with the mode in the 'BIOS_mode' slot.

A user-defined function can be invoked every time the video mode is changed (i.e.
'GrSetMode' is called). This function should not take any parameters and its return value (if
any) is ignored. It can be installed (for all subsequent 'GrSetMode' calls) with the:
void GrSetModeHook(void (*callback)(void));

function. The current graphics mode (one of the valid 'mode' argument values for
'GrSetMode') can be obtained with the:
int GrCurrentMode(void);

function, while the type of the installed graphics adapter can be determined with the
int GrAdapterType(void);

function. 'GrAdapterType' returns the type of the adapter as one of the following three
symbolic constants (defined in "grx.h"):
#define GR_VGA 0 /* VGA adapter */
#define GR_EGA 1 /* EGA adapter */
#define GR_HERC 2 /* Hercules mono adapter */
#define GR_8514A 3 /* 8514/A or compatible */
#define GR_S3 4 /* S3 graphics accelerator */

Graphics contexts
The library supports a set of drawing regions called 'contexts' (the 'GrContext' structure).
These can be in video memory or in system memory. Contexts in system memory always
have the same memory organization as the video memory. When 'GrSetMode' is called, a
default context is created which maps to the whole graphics screen. Contexts are described
by the 'GrContext' data structure:
typedef struct _GR_context_ {
 char far *gc_baseaddr; /* base address of display memory */
 long gc_frameaddr; /* upper left corner coordinate */
 long gc_planeoffset; /* offset to next color plane */
 int gc_lineoffset; /* offset to next scan line in bytes */
 char gc_onscreen; /* is it in video memory ? */
 char gc_memflags; /* memory allocation flags */
 int gc_xmax; /* max X coord (width - 1) */
 int gc_ymax; /* max Y coord (height - 1) */
 int gc_xcliplo; /* low X clipping limit */

LIBGRX graphics library user's manual
 int gc_ycliplo; /* low Y clipping limit */
 int gc_xcliphi; /* high X clipping limit */
 int gc_ycliphi; /* high Y clipping limit */
 int gc_usrxbase; /* user window min X coordinate */
 int gc_usrybase; /* user window min Y coordinate */
 int gc_usrwidth; /* user window width */
 int gc_usrheight; /* user window height */
 int gc_xoffset; /* X offset from root's base */
 int gc_yoffset; /* Y offset from root's base */
 struct _GR_context_ *gc_root; /* context which owns frame buf */
} GrContext;

There is a subtype of the 'GrContext' structure. The structure 'GrVidRAM' contains only the
first slots of a context describing the memory layout of a context. This structure is used as a
component of other more complex data structures in the library.
typedef struct {
 char far *gc_baseaddr; /* base address of display memory */
 long gc_frameaddr; /* upper left corner coordinate */
 long gc_planeoffset; /* offset to next color plane */
 int gc_lineoffset; /* offset to next scan line in bytes */
 char gc_onscreen; /* is it in video memory ? */
 char gc_memflags; /* memory allocation flags */
} GrVidRAM;

The following four functions return information about the layout of and memory occupied by
a graphics context of size 'width' by 'height' in the current graphics mode (as set up by
'GrSetMode'):
int GrLineOffset(int width);
int GrNumPlanes(void);
long GrPlaneSize(int w,int h);
long GrContextSize(int w,int h);

'GrLineOffset' always returns the offset between successive pixel rows of the context in
bytes. 'GrNumPlanes' returns the number of bitmap planes in the current graphics mode.
'GrContextSize' calculates the total amount of memory needed by a context, while
'GrPlaneSize' calculates the size of a bitplane in the context. The function:
GrContext *GrCreateContext(int w,int h,char far *memory,GrContext *where);

can be used to create a new context in system memory. The NULL pointer is also accepted
as the value of the 'memory' and 'where' arguments, in this case the library allocates the
necessary amount of memory internally.

It is a general convention in the library that functions returning pointers to any LIBGRX
specific data structure have a last argument (most of the time named 'where' in the
prototypes) which can be used to pass the address of the data structure which should be
filled with the result. If this 'where' pointer has the value of NULL, then the library allocates
space for the data structure internally.

The function:
GrContext *GrCreateSubContext(int x1,int y1,int x2,int y2,GrContext *parent,GrContext *where);

creates a new sub-context which maps to a part of an existing context. The coordinate
arguments ('x1' through 'y2') are interpreted relative to the parent context's limits. Pixel
addressing is zero-based even in sub-contexts, i.e. the address of the top left pixel is (0,0)
even in a sub-context which has been mapped onto the interior of its parent context.

Sub-contexts can be resized, but not their parents (i.e. anything returned by
'GrCreateContext' or set up by 'GrSetMode' cannot be resized -- because this could lead to
irrecoverable "loss" of drawing memory. The following function can be used for this purpose:

LIBGRX graphics library user's manual

void GrResizeSubContext(GrContext *context,int x1,int y1,int x2,int y2);

The current context structure is stored in a static location in the library. (For efficiency
reasons -- it is used quite frequently, and this way no pointer dereferencing is necessary.)
The context stores all relevant information about the video organization, coordinate limits,
etc... The current context can be set with the:
void GrSetContext(GrContext *context);

function. This function will reset the current context to the full graphics screen if it is passed
the NULL pointer as argument. The value of the current context can be saved into a
'GrContext' structure pointed to by 'where' using:
GrContext *GrSaveContext(GrContext *where);

(Again, if 'where' is NULL, the library allocates the space.) Contexts can be destroyed with:
void GrDestroyContext(GrContext *context);

This function will free the memory occupied by the context only if it was allocated originally
by the library. The next three functions set up and query the clipping limits associated with
the context:
void GrSetClipBox(int x1,int y1,int x2,int y2);
void GrGetClipBox(int *x1p,int *y1p,int *x2p,int *y2p);
void GrResetClipBox(void);

'GrResetClipBox' sets the clipping limits to the limits of context. These are the limits set up
initially when a context is created. The limits of the current context can be obtained using
the following functions:
int GrMaxX(void);
int GrMaxY(void);
int GrSizeX(void);
int GrSizeY(void);

The 'Max' functions return the biggest valid coordinate, while the 'Size' functions return a
value one higher. The limits of the graphics screen (regardless of the current context) can be
obtained with:
int GrScreenX(void);
int GrScreenY(void);

Color management
The library supports two models for color management. In the 'indirect' (or color table) mode
colors can be allocated with the highest resolution supported by the hardware (EGA: 2 bits,
VGA: 6 bits) with respect to the component color intensities. In the 'direct' or RGB mode
color indices map directly into component color intensities with non-overlapping bitfields of
the color index representing the component colors. The RGB mode is supported in 256 color
and 32768 color VGA modes only (for 32768 colors this is the only mode because of the
limitations of the VGA hardware with HiColor DAC). In RGB mode the color index maps to
component color intensities as follows:

 256: rrrgggbb (3 bits for red and green, 2 for blue)
 32768: xrrrrrgggggbbbbb (5 bits for each component color)

The RGB mode is not supported in 16 color EGA and VGA modes as there are too few
available colors to provide adequate coverage. The advantage of the RGB mode is faster

LIBGRX graphics library user's manual
color allocation (no table lookup, DAC register programming, etc...) its disadvantage is the
relatively crude approximation of the component color intensities.

After the first 'GrSetMode' call two colors are always defined: black and white. The indices
of these two colors are returned by the functions:
int GrBlack(void);
int GrWhite(void);

NOTE: unlike the original DJGPP library, LIBGRX does not guarantee that the white color
has the color index value of one. (GrBlack still returns 0).

The library supports four write modes: write, XOR, logical OR and logical AND. These can be
selected with OR-ing the color index with one of the following constants declared in "grx.h":
#ifdef __TURBOC__
define GrXOR 0x100 /* to "XOR" any color to the screen */
define GrOR 0x200 /* to "OR" to the screen */
define GrAND 0x300 /* to "AND" to the screen */
#endif
#ifdef __GNUC__ /* changed for 16 bit colors */
define GrXOR 0x10000 /* to "XOR" any color to the screen */
define GrOR 0x20000 /* to "OR" to the screen */
define GrAND 0x30000 /* to "AND" to the screen */
#endif
#define GrWRITE 0 /* write color */
#define GrNOCOLOR (GrXOR | 0) /* GrNOCOLOR is used for "no" color */

NOTE: 'GrXOR' was declared to be "0x100" in the original DJGPP library, but its value had to
be changed in LIBGRX in anticipation of the 32768 color VGA support.

By convention, the no-op color is obtained by combining color index 0 (black) with the XOR
operation. This no-op color has been defined in "grx.h" as 'GrNOCOLOR'.

The number of colors in the current graphics mode is returned by the:
int GrNumColors(void);

function, while the number of unused, available color can be obtained by calling:
int GrNumFreeColors(void);

Colors can be allocated with the:
int GrAllocColor(int r,int g,int b);

function (component intensities can range from 0 to 255), or with the:
int GrAllocCell(void);

function. In the second case the component intensities of the returned color can be set with:
void GrSetColor(int color,int r,int g,int b);

Both 'Alloc' functions return 'GrNOCOLOR' if there are no more free colors available.
Additionally 'GrAllocCell' always returns 'GrNOCOLOR' when the color system is in RGB
mode, as colors returned by 'GrAllocCell' are meant to be changed -- what is not supposed to
be done in RGB mode. Also note that 'GrAllocColor' operates much more efficiently in RGB
mode, and that it never returns 'GrNOCOLOR' in this case.

Color table entries can be freed (when not in RGB mode) by calling:

LIBGRX graphics library user's manual
void GrFreeColor(int color);

The component intensities of any color can be queried using the function:
void GrQueryColor(int c,int *r,int *g,int *b);

Initially the color system is in color table (indirect) mode. (Except for the 32768 color VGA
modes which are always in RGB mode.) 256 color VGA modes can be put into the RGB mode
by calling:
void GrSetRGBcolorMode(void);

The color system can be reset (i.e. put back into color table mode if possible, all colors freed
except for black and white) by calling:
void GrResetColors(void);

The function:
void GrRefreshColors(void);

reloads the currently allocated color values into the video hardware. This function is not
needed in typical applications, unless the display adapter is programmed directly by the
application.

Graphics primitives
The screen, the current context or the current clip box can be cleared (i.e. set to a desired
background color) by using one of the following three functions:
void GrClearScreen(int bg);
void GrClearContext(int bg);
void GrClearClipBox(int bg);

The following line drawing graphics primitives are supported by the library:
void GrPlot(int x,int y,int c);
void GrLine(int x1,int y1,int x2,int y2,int c);
void GrHLine(int x1,int x2,int y,int c);
void GrVLine(int x,int y1,int y2,int c);
void GrBox(int x1,int y1,int x2,int y2,int c);
void GrCircle(int xc,int yc,int r,int c);
void GrEllipse(int xc,int yc,int xa,int ya,int c);
void GrCircleArc(int xc,int yc,int r,int start,int end,int c);
void GrEllipseArc(int xc,int yc,int xa,int ya,int start,int end,int c);
void GrPolyLine(int numpts,int points[][2],int c);
void GrPolygon(int numpts,int points[][2],int c);

All primitives operate on the current graphics context. The last argument of these functions
is always the color index to use for the drawing. The 'HLine' and 'VLine' primitives are for
drawing horizontal and vertical lines. They have been included in the library because they
are more efficient than the general line drawing provided by 'GrLine'. The ellipse primitives
can only draw ellipses with their major axis parallel with either the X or Y coordinate axis.
They take the half X and Y axis length in the 'xa' and 'ya' arguments. The arc (circle and
ellipse) drawing functions take the start and end angles in tenths of degrees (i.e. meaningful
range: 0 ... 3600). The angles are interpreted counter-clockwise starting from the positive X
axis. The polyline and polygon primitives take the address of an n by 2 coordinate array. The
X values should be stored in the elements with 0 second index, and the Y values in the
elements with a second index value of 1. Coordinate arrays passed to the polygon primitives
can either contain or omit the closing edge of the polygon -- the primitive will append it to
the list if it is missing.

LIBGRX graphics library user's manual

The following filled primitives are available:
void GrFilledBox(int x1,int y1,int x2,int y2,int c);
void GrFramedBox(int x1,int y1,int x2,int y2,int wdt,GrFBoxColors *c);
void GrFilledCircle(int xc,int yc,int r,int c);
void GrFilledEllipse(int xc,int yc,int xa,int ya,int c);
void GrFilledCircleArc(int xc,int yc,int r,int start,int end,int c);
void GrFilledEllipseArc(int xc,int yc,int xa,int ya,int start,int end,int c);
void GrFilledPolygon(int numpts,int points[][2],int c);
void GrFilledConvexPolygon(int numpts,int points[][2],int c);

Similarly to the line drawing, all of the above primitives operate on the current graphics
context. The 'GrFramedBox' primitive can be used to draw motif-like shaded boxes and
"ordinary" framed boxes as well. The 'x1' through 'y2' coordinates specify the interior of the
box, the border is outside this area. The primitive uses five different colors for the interior
and four borders of the box which are specified in the 'GrFBoxColors' structure:
typedef struct {
 int fbx_intcolor;
 int fbx_topcolor;
 int fbx_rightcolor;
 int fbx_bottomcolor;
 int fbx_leftcolor;
} GrFBoxColors;

The 'GrFilledConvexPolygon' primitive can be used to fill convex polygons. It can also be
used to fill some concave polygons whose boundaries do not intersect any horizontal scan
line more than twice. All other concave polygons have to be filled with the (somewhat less
efficient) 'GrFilledPolygon' primitive. This primitive can also be used to fill several disjoint
non-overlapping polygons in a single operation.

The current color value of any pixel in the current context can be obtained with:
int GrPixel(int x,int y);

Rectangular areas can be transferred within a context or between contexts by calling:
void GrBitBlt(GrContext *dest,int x,int y,GrContext *source,int x1,int y1,int x2,int y2,int oper);

The 'oper' argument should be one of supported color modes (write, XOR, OR, AND), it will
control how the pixels from the source context are combined with the pixels in the
destination context. If either the source or the destination context argument is the NULL
pointer then the current context is used for that argument.

Non-clipping graphics primitives
There is a non-clipping version of some of the elementary primitives. These are somewhat
more efficient than the regular versions. These are to be used only in situations when
it is absolutely certain that no drawing will be performed beyond the boundaries
of the current context. Otherwise the program will almost certainly crash! The
reason for including these functions is that they are somewhat more efficient than the
regular, clipping versions. ALSO NOTE: These function do not check for conflicts with the
mouse cursor. (See the explanation about the mouse cursor handling later in this document.)
The list of the supported non-clipping primitives:
void GrPlotNC(int x,int y,int c);
void GrLineNC(int x1,int y1,int x2,int y2,int c);
void GrHLineNC(int x1,int x2,int y,int c);
void GrVLineNC(int x,int y1,int y2,int c);
void GrBoxNC(int x1,int y1,int x2,int y2,int c);
void GrFilledBoxNC(int x1,int y1,int x2,int y2,int c);

LIBGRX graphics library user's manual
void GrFramedBoxNC(int x1,int y1,int x2,int y2,int wdt,GrFBoxColors *c);
void GrBitBltNC(GrContext *dst,int x,int y,GrContext *src,int x1,int y1,int x2,int y2,int oper);
int GrPixelNC(int x,int y);

Customized line drawing
The basic line drawing graphics primitives described previously always draw continuous lines
which are one pixel wide. There is another group of line drawing functions which can be used
to draw wide and/or patterned lines. These functions have similar parameter passing
conventions as the basic ones with one difference: instead of the color value a pointer to a
structure of type 'GrLineOption' has to be passed to them. The definition of the
'GrLineOption' structure:
typedef struct {
 int lno_color; /* color used to draw line */
 int lno_width; /* width of the line */
 int lno_pattlen; /* length of the dash pattern */
 unsigned char *lno_dashpat; /* draw/nodraw pattern */
} GrLineOption;

The 'lno_pattlen' structure element should be equal to the number of alternating draw -- no
draw section length values in the array pointed to by the 'lno_dashpat' element. The dash
pattern array is assumed to begin with a drawn section. If the pattern length is equal to zero
a continuous line is drawn. The available custom line drawing primitives:

void GrCustomLine(int x1,int y1,int x2,int y2,GrLineOption *o);
void GrCustomBox(int x1,int y1,int x2,int y2,GrLineOption *o);
void GrCustomCircle(int xc,int yc,int r,GrLineOption *o);
void GrCustomEllipse(int xc,int yc,int xa,int ya,GrLineOption *o);
void GrCustomCircleArc(int xc,int yc,int r,int start,int end,GrLineOption *o);
void GrCustomEllipseArc(int xc,int yc,int xa,int ya,int start,int end,GrLineOption *o);
void GrCustomPolyLine(int numpts,int points[][2],GrLineOption *o);
void GrCustomPolygon(int numpts,int points[][2],GrLineOption *o);

Pattern filled graphics primitives
The library also supports a pattern filled version of the basic filled primitives described
above. These functions have similar parameter passing conventions as the basic ones with
one difference: instead of the color value a pointer to an union of type 'GrPattern' has to be
passed to them. The 'GrPattern' union can contain either a bitmap or a pixmap fill pattern.
The first integer slot in the union determines which type it is. Bitmap fill patterns are
rectangular arrays of bits, each set bit representing the foreground color of the fill operation,
and each zero bit representing the background. Both the foreground and background colors
can be combined with any of the supported logical operations. Bitmap fill patterns have one
restriction: their width must be eight pixels. Pixmap fill patterns are very similar to contexts,
the data is transferred to the filled primitive using 'BitBlt' operations. The relevant structure
declarations (from "grx.h"):
/*
* BITMAP: a mode independent way to specify a fill pattern of two
* colors. It is always 8 pixels wide (1 byte per scan line), its
* height is user-defined. SET THE TYPE FLAG TO ZERO!!!
*/
typedef struct {
 int bmp_ispixmap; /* type flag for pattern union */
 int bmp_height; /* bitmap height */
 unsigned char *bmp_data; /* pointer to the bit pattern */
 int bmp_fgcolor; /* foreground color for fill */
 int bmp_bgcolor; /* background color for fill */
 int bmp_memflags; /* set if dynamically allocated */
} GrBitmap;

LIBGRX graphics library user's manual
/*
* PIXMAP: a fill pattern stored in a layout identical to the video RAM
* for filling using 'bitblt'-s. It is mode dependent, typically one
* of the library functions is used to build it. KEEP THE TYPE FLAG
* NONZERO!!!
*/
typedef struct {
 int pxp_ispixmap; /* type flag for pattern union */
 int pxp_width; /* pixmap width (in pixels) */
 int pxp_height; /* pixmap height (in pixels) */
 int pxp_oper; /* bitblt mode (SET, OR, XOR, AND) */
 GrVidRAM pxp_source; /* source context for fill */
} GrPixmap;

/*
* Fill pattern union -- can either be a bitmap or a pixmap
*/
typedef union {
 int gp_ispixmap; /* nonzero for pixmaps */
 GrBitmap gp_bitmap; /* fill bitmap */
 GrPixmap gp_pixmap; /* fill pixmap */
} GrPattern;

#define gp_bmp_data gp_bitmap.bmp_data
#define gp_bmp_height gp_bitmap.bmp_height
#define gp_bmp_fgcolor gp_bitmap.bmp_fgcolor
#define gp_bmp_bgcolor gp_bitmap.bmp_bgcolor

#define gp_pxp_width gp_pixmap.pxp_width
#define gp_pxp_height gp_pixmap.pxp_height
#define gp_pxp_oper gp_pixmap.pxp_oper
#define gp_pxp_source gp_pixmap.pxp_source

Bitmap patterns can be easily built from initialized character arrays and static structures by
the C compiler, thus no special support is included in the library for creating them. The only
action required from the application program might be changing the foreground and
background colors as needed. Pixmap patterns are more difficult to build as they replicate
the layout of the video memory which changes for different video modes. For this reason the
library provides three functions to create pixmap patterns in a mode-independent way:
GrPattern *GrBuildPixmap(char *pixels,int w,int h,GrColorTableP colors);
GrPattern *GrBuildPixmapFromBits(char *bits,int w,int h,int fgc,int bgc);
GrPattern *GrConvertToPixmap(GrContext *src);

'GrBuildPixmap' builds a pixmap from a two dimensional ('w' by 'h') array of characters. The
elements in this array are used as indices into the color table specified with the argument
'colors'. (This means that pixmaps created this way can use at most 256 colors.) The color
table pointer:
typedef int *GrColorTableP;

should point to an array of integers with the first element being the number of colors in the
table and the color indices themselves starting with the second element. NOTE: any color
modifiers (GrXOR, GrOR, GrAND) OR-ed to the elements of the color table are ignored.

The 'GrBuildPixmapFromBits' function builds a pixmap fill pattern from bitmap data. It is
useful if the width of the bitmap pattern is not eight as such bitmap patterns can not be
used to build a 'GrBitmap' structure.

The 'GrConvertToPixmap' function converts a graphics context to a pixmap fill pattern. It is
useful when the pattern can be created with graphics drawing operations. NOTE: the
pixmap pattern and the original context share the drawing RAM, thus if the context is
redrawn the fill pattern changes as well.

Fill patterns which were built by library routines can be destroyed when no longer needed

LIBGRX graphics library user's manual
(i.e. the space occupied by them can be freed) by calling:
void GrDestroyPattern(GrPattern *p);

NOTE: when pixmap fill patterns converted from contexts are destroyed, the drawing RAM is
not freed. It is freed when the original context is destroyed. Fill patterns built by the
application have to be destroyed by the application as well (if this is needed).

The list of supported pattern filled graphics primitives is shown below. These functions are
very similar to their solid filled counterparts, only their last argument is different:
void GrPatternFilledPlot(int x,int y,GrPattern *p);
void GrPatternFilledLine(int x1,int y1,int x2,int y2,GrPattern *p);
void GrPatternFilledBox(int x1,int y1,int x2,int y2,GrPattern *p);
void GrPatternFilledCircle(int xc,int yc,int r,GrPattern *p);
void GrPatternFilledEllipse(int xc,int yc,int xa,int ya,GrPattern *p);
void GrPatternFilledCircleArc(int xc,int yc,int r,int start,int end,GrPattern *p);
void GrPatternFilledEllipseArc(int xc,int yc,int xa,int ya,int start,int end,GrPattern *p);
void GrPatternFilledConvexPolygon(int numpts,int points[][2],GrPattern *p);
void GrPatternFilledPolygon(int numpts,int points[][2],GrPattern *p);

Strictly speaking the plot and line functions in the above group are not filled, but they have
been included here for convenience.

Patterned line drawing
The custom line drawing functions introduced above also have a version when the drawn
sections can be filled with a (pixmap or bitmap) fill pattern. To achieve this these functions
must be passed both a custom line drawing option ('GrLineOption' structure) and a fill
pattern ('GrPattern' union). These two have been combined into the 'GrLinePattern'
structure:
typedef struct {
 GrPattern *lnp_pattern; /* fill pattern */
 GrLineOption *lnp_option; /* width + dash pattern */
} GrLinePattern;

All patterned line drawing functions take a pointer to this structure as their last argument.
The list of available functions:
void GrPatternedLine(int x1,int y1,int x2,int y2,GrLinePattern *lp);
void GrPatternedBox(int x1,int y1,int x2,int y2,GrLinePattern *lp);
void GrPatternedCircle(int xc,int yc,int r,GrLinePattern *lp);
void GrPatternedEllipse(int xc,int yc,int xa,int ya,GrLinePattern *lp);
void GrPatternedCircleArc(int xc,int yc,int r,int start,int end,GrLinePattern *lp);
void GrPatternedEllipseArc(int xc,int yc,int xa,int ya,int start,int end,GrLinePattern *lp);
void GrPatternedPolyLine(int numpts,int points[][2],GrLinePattern *lp);
void GrPatternedPolygon(int numpts,int points[][2],GrLinePattern *lp);

Text drawing
The library supports loadable bit-mapped (i.e. not scalable!) fonts. Some of these fonts were
converted from VGA BIOS fonts and fonts on utility diskettes coming with VGA cards. These
fonts have all 256 characters. Some additional fonts were converted from fonts in the MIT
X11 distribution. These have a variable number of characters, some support all 256
character codes, some only the printable ASCII codes. Fonts also have family names, which
are used in a font lookup procedure supported by the library (see later). The following font
families are included in the distribution:

Font file name: Family:Description:

LIBGRX graphics library user's manual

pc<W>x<H>[t].fnt pc BIOS font, fixed
xm<W>x<H>[b][i].fnt X_miscX11, fixed, miscellaneous group
char<H>[b][i].fnt char X11, proportional, charter family
cour<H>[b][i].fnt cour X11, fixed, courier
helve<H>[b][i].fnt helve X11, proportional, helvetica
lucb<H>[b][i].fnt lucb X11, proportional, lucida bright
lucs<H>[b][i].fnt lucs X11, proportional, lucida sans serif
luct<H>[b][i].fnt luct X11, fixed, lucida typewriter
ncen<H>[b][i].fnt ncen X11, proportional, new century schoolbook
symb<H>.fnt symbol X11, proportional, greek letters, symbols
tms<H>[b][i].fnt times X11, proportional, times

In the font names <W> means the font width, <H> the font height. Many font families have
bold and/or italic variants. The files containing these fonts contain a 'b' and/or 'i' character in
their name just before the extension. Additionally, the strings "_bold" and/or "_ital" are
appended to the font family names. Some of the pc BIOS fonts come in thin formats also,
these are denoted by a 't' in their file names and the string "_thin" in their family names.

NOTE: the basic libgrx distribution ("cbgrx102.zip") contains only the full "pc", "courier",
"helve", "symbol" and "times" font families and selected sizes from the "X_misc" family.
(Because of archive size considerations!) The full compliment of fonts can be found in the
archive file named "cbgrxfnt.zip", which should be available from the same site where the
basic library was obtained from.

Fonts are loaded with the 'GrLoadFont' function. If the font file name starts with any path
separator character or character sequence ('<drive letter>:', '/' or '\') then it is loaded from
the specified directory, otherwise the font is loaded from the default font path. The font path
can be set up with the 'GrSetFontPath' function. If the font path is not set then the value of
the 'GRXFONT' environment variable is used as the font path. If 'GrLoadFont' is called again
with the name of an already loaded font then it will return a pointer to the result of the first
loading. The special font names "@:pc8x8.fnt", "@:pc8x14.fnt" and "@:pc8x16.fnt" will
cause 'GrLoadFont' to load the font from the BIOS of the graphics card of the PC (provided
that it has the desired font). Alternatively, 'GrLoadBIOSFont' can also be called to load a font
which resides in the BIOS of the display adapter. (The difference is that 'GrLoadFont' will look
at the disk as well if the BIOS does not have the font. For example: EGA-s don't have a 16
row font in their BIOS.) Both font loading routines return NULL if the font was not found.
When not needed any more, fonts can be unloaded (i.e. the storage occupied by them freed)
by calling 'GrUnloadFont'. The prototype declarations for these functions:
GrFont *GrLoadFont(char *name);
GrFont *GrLoadBIOSFont(char *name);
void GrUnloadFont(GrFont *font);
void GrSetFontPath(char *path);

The 'GrFont' structure is actually a font header, the real font data is right next to this header
in memory, but it is typically hidden from the application program. If needed, the include file
"grxfont.h" can provide more details. The 'GrFont' structure:
typedef struct {
 short fnt_width; /* width (average for proportional) */
 short fnt_height; /* font height */
 short fnt_minchar; /* lowest character code in font */
 short fnt_maxchar; /* highest character code in font */
 short fnt_isfixed; /* nonzero if fixed font */
 short fnt_internal; /* nonzero if BIOS font */
 short fnt_baseline; /* baseline from top of font */
 short fnt_undwidth; /* underline width (at bottom) */
 char fnt_name[GR_NAMEWIDTH]; /* font file name (w/o path) */
 char fnt_family[GR_NAMEWIDTH]; /* font family name */
} GrFont;

LIBGRX graphics library user's manual

There is a function: 'GrFindBestFont' which returns the font which matches best a desired
size. (Best match: not bigger, but as close as possible). The application can specify whether
it wants 'GrFindBestFont' to find the best match using fonts in their original sizes only, or
possibly enlarged (with the value of the 'magnify' argument -- 0: no, nonzero: yes).
'GrFindBestFont' also takes a string argument which specifies the font family from which to
select the font. The string can specify several family patterns separated by the ':' character.
Each pattern can contain the '?' and '*' wildcard characters which work the usual way (in
UNIX sense -- i.e. "X*ital" will match "X_misc_ital", but not "X_misc_bold"..).
GrTextOption *GrFindBestFont(int width,int height,int magnify,char *family,GrTextOption *where);

The 'GrTextOption' structure specifies how to draw a character string:
typedef struct {
 GrFont *txo_font; /* font to be used */
 int txo_xmag; /* X magnification */
 int txo_ymag; /* Y magnification */
 union {
 int v; /* color when no attributes */
 GrColorTableP p; /* ptr to color table otherwise */
 } txo_fgcolor,txo_bgcolor; /* foreground, background */
 char txo_direct; /* direction */
 char txo_xalign; /* X alignment */
 char txo_yalign; /* Y alignment */
 char txo_chrtype; /* character type */
} GrTextOption;

The font can be enlarged independently in the X and Y directions, ('txo_xmag' and
'txo_ymag' slots -- values: 1 and up) the text can be rotated in increments of 90 degrees
('txo_direct'), alignments can be set in both directions ('txo_xalign' and 'txo_yalign'), and
separate fore and background colors can be specified. The accepted text direction values:
#define GR_TEXT_RIGHT 0 /* normal */
#define GR_TEXT_DOWN 1 /* downward */
#define GR_TEXT_LEFT 2 /* upside down, right to left */
#define GR_TEXT_UP 3 /* upward */
#define GR_TEXT_DEFAULT GR_TEXT_RIGHT

The accepted horizontal and vertical alignment option values:
#define GR_ALIGN_LEFT 0 /* X only */
#define GR_ALIGN_TOP 0 /* Y only */
#define GR_ALIGN_CENTER 1 /* X, Y */
#define GR_ALIGN_RIGHT 2 /* X only */
#define GR_ALIGN_BOTTOM 2 /* Y only */
#define GR_ALIGN_BASELINE 3 /* Y only */
#define GR_ALIGN_DEFAULT GR_ALIGN_LEFT

Text strings can be of three different types: one character per byte (i.e. the usual C character
string, this is the default), one character per 16-bit word (suitable for fonts with a large
number of characters), and a PC-style character-attribute pair. In the last case the
'GrTextOption' structure must contain a pointer to a color table of size 16 (fg color bits in
attrib) or 8 (bg color bits). (The color table format is explained in more detail in the previous
section explaining the methods to build fill patterns.) The supported text types:
#define GR_BYTE_TEXT 0 /* one byte per character */
#define GR_WORD_TEXT 1 /* two bytes per character */
#define GR_ATTR_TEXT 2 /* char w/ PC style attribute byte */

The PC-style attribute text uses the same layout (first byte: character, second: attributes)
and bitfields as the text mode screen on the PC. The only difference is that the 'blink' bit is
not supported (it would be very time consuming -- the PC text mode does it with hardware
support). This bit is used instead to control the underlined display of characters. For

LIBGRX graphics library user's manual
convenience the following attribute manipulation macros have been declared in "grx.h":
#define GR_BUILD_ATTR(fgcolor,bgcolor,underline) \
 (((fgcolor) & 15) | (((bgcolor) & 7) << 4) | (((underline) & 1) << 7))
#define GR_ATTR_FGCOLOR(attr) ((attr) & 15)
#define GR_ATTR_BGCOLOR(attr) (((attr) >> 4) & 7)
#define GR_ATTR_UNDERLINE(attr) (((attr) >> 7) & 1)

Text strings of the types 'GR_BYTE_TEXT' and 'GR_WORD_TEXT" can also be drawn
underlined. This is controlled by OR-ing the constant 'GR_UNDERLINE_TEXT' to the
foreground color value:
#define GR_UNDERLINE_TEXT (GrXOR << 6)

After the application initializes a text option structure with the desired values it can call one
of the following two text drawing functions:
void GrDrawChar(int chr,int x,int y,GrTextOption *opt);
void GrDrawString(char *text,int length,int x,int y,GrTextOption *opt);

NOTE: text drawing is fastest when the font is not magnified, it is drawn in the 'normal'
direction, and the character does not have to be clipped. It this case the library can use the
appropriate low-level video RAM access routine (see "INTERNAL.DOC" for more details),
while in any other case the text is drawn pixel-by-pixel (or rectangle-by-rectangle if
enlarged) by the higher-level code.

The function 'GrTextXY' is provided for compatibility with the original 256 color DJGPP
graphics library. It draws the text in the standard direction, unmagnified, and using the 16
row BIOS font on VGA-s or the 14 row font on EGA-s.
void GrTextXY(int x,int y,char *text,int fg,int bg);

The size of a font, a character or a text string can be obtained by calling one of the following
functions. These functions also take into consideration the magnification and text direction
specified in the text option structure passed to them.
int GrFontHeight(GrTextOption *opt);
int GrFontWidth(GrTextOption *opt);
int GrCharWidth(int chr,GrTextOption *opt);
int GrCharHeight(int chr,GrTextOption *opt);
int GrStringWidth(char *text,int length,GrTextOption *opt);
int GrStringHeight(char *text,int length,GrTextOption *opt);

The 'GrTextRegion' structure and its associated functions can be used to implement a fast
(as much as possible in graphics modes) rectangular text window using a fixed font. Clipping
for such windows is done in character size increments instead of pixels (i.e. no partial
characters are drawn). Only fixed fonts can be used in their natural size. 'GrDumpText' will
cache the code of the drawn characters in the buffer pointed to by the 'backup' slot (if it is
non-NULL) and will draw a character only if the previously drawn character in that grid
element is different. This can speed up text scrolling significantly in graphics modes. The
supported text types are the same as above.
typedef struct {
 GrFont *txr_font; /* font to be used */
 char *txr_buffer; /* pointer to text buffer */
 char *txr_backup; /* optional backup buffer */
 int txr_xpos; /* upper left corner X coordinate */
 int txr_ypos; /* upper left corner Y coordinate */
 int txr_width; /* width of area in chars */
 int txr_height; /* height of area in chars */
 int txr_lineoffset; /* offset in buffer(s) between lines */
 union {
 int v; /* color when no attributes */
 GrColorTableP p; /* ptr to color table otherwise */

LIBGRX graphics library user's manual
 } txr_fgcolor,txr_bgcolor; /* foreground, background */
 char txr_chrtype; /* character type (see above) */
} GrTextRegion;

void GrDumpChar(int chr,int col,int row,GrTextRegion *r);
void GrDumpText(int col,int row,int wdt,int hgt,GrTextRegion *r);
void GrDumpTextRegion(GrTextRegion *r);

The 'GrDumpTextRegion' function outputs the whole text region, while 'GrDumpText' draws
only a user-specified part of it. 'GrDumpChar' updates the character in the buffer at the
specified location with the new character passed to it as argument and then draws the new
character on the screen as well.

Drawing in user coordinates
There is a second set of the graphics primitives which operates in user coordinates. Every
context has a user to screen coordinate mapping associated with it. An application specifies
the user window by calling the 'GrSetUserWindow' function.
void GrSetUserWindow(int x1,int y1,int x2,int y2);

A call to this function it in fact specifies the virtual coordinate limits which will be mapped
onto the current context regardless of the size of the context. For example, the call:
GrSetUserWindow(0,0,11999,8999);

tells the library that the program will perform its drawing operations in a coordinate system
X:0...11999 (width = 12000) and Y:0...8999 (height = 9000). This coordinate range will be
mapped onto the total area of the current context. The virtual coordinate system can also be
shifted. For example:
GrSetUserWindow(5000,2000,16999,10999);

The user coordinates can even be used to turn the usual left-handed coordinate system (0:0
corresponds to the upper left corner) to a right handed one (0:0 corresponds to the bottom
left corner) by calling:
GrSetUserWindow(0,8999,11999,0);

The library also provides three utility functions for the query of the current user coordinate
limits and for converting user coordinates to screen coordinates and vice versa.
void GrGetUserWindow(int *x1,int *y1,int *x2,int *y2);
void GrGetScreenCoord(int *x,int *y);
void GrGetUserCoord(int *x,int *y);

If an application wants to take advantage of the user to screen coordinate mapping it has
to use the user coordinate version of the graphics primitives. These have
exactly the same parameter passing conventions as their screen coordinate
counterparts. NOTE: the user coordinate system is not initialized by
the library! The application has to set up its coordinate mapping before
calling any of the use coordinate drawing functions -- otherwise the program
will almost certainly exit (in a quite ungraceful fashion) with a 'division by
zero' error. The list of supported user coordinate drawing functions:
void GrUsrPlot(int x,int y,int c);
void GrUsrLine(int x1,int y1,int x2,int y2,int c);
void GrUsrHLine(int x1,int x2,int y,int c);
void GrUsrVLine(int x,int y1,int y2,int c);

LIBGRX graphics library user's manual
void GrUsrBox(int x1,int y1,int x2,int y2,int c);
void GrUsrFilledBox(int x1,int y1,int x2,int y2,int c);
void GrUsrFramedBox(int x1,int y1,int x2,int y2,int wdt,GrFBoxColors *c);
void GrUsrCircle(int xc,int yc,int r,int c);
void GrUsrEllipse(int xc,int yc,int xa,int ya,int c);
void GrUsrCircleArc(int xc,int yc,int r,int start,int end,int c);
void GrUsrEllipseArc(int xc,int yc,int xa,int ya,int start,int end,int c);
void GrUsrFilledCircle(int xc,int yc,int r,int c);
void GrUsrFilledEllipse(int xc,int yc,int xa,int ya,int c);
void GrUsrFilledCircleArc(int xc,int yc,int r,int start,int end,int c);
void GrUsrFilledEllipseArc(int xc,int yc,int xa,int ya,int start,int end,int c);
void GrUsrPolyLine(int numpts,int points[][2],int c);
void GrUsrPolygon(int numpts,int points[][2],int c);
void GrUsrFilledConvexPolygon(int numpts,int points[][2],int c);
void GrUsrFilledPolygon(int numpts,int points[][2],int c);
int GrUsrPixel(int x,int y);

void GrUsrCustomLine(int x1,int y1,int x2,int y2,GrLineOption *o);
void GrUsrCustomBox(int x1,int y1,int x2,int y2,GrLineOption *o);
void GrUsrCustomCircle(int xc,int yc,int r,GrLineOption *o);
void GrUsrCustomEllipse(int xc,int yc,int xa,int ya,GrLineOption *o);
void GrUsrCustomCircleArc(int xc,int yc,int r,int start,int end,GrLineOption *o);
void GrUsrCustomEllipseArc(int xc,int yc,int xa,int ya,int start,int end,GrLineOption *o);
void GrUsrCustomPolyLine(int numpts,int points[][2],GrLineOption *o);
void GrUsrCustomPolygon(int numpts,int points[][2],GrLineOption *o);

void GrUsrPatternedPlot(int x,int y,GrPattern *p);
void GrUsrPatternedLine(int x1,int y1,int x2,int y2,GrLinePattern *lp);
void GrUsrPatternedBox(int x1,int y1,int x2,int y2,GrLinePattern *lp);
void GrUsrPatternedCircle(int xc,int yc,int r,GrLinePattern *lp);
void GrUsrPatternedEllipse(int xc,int yc,int xa,int ya,GrLinePattern *lp);
void GrUsrPatternedCircleArc(int xc,int yc,int r,int start,int end,GrLinePattern *lp);
void GrUsrPatternedEllipseArc(int xc,int yc,int xa,int ya,int start,int end,GrLinePattern *lp);
void GrUsrPatternedPolyLine(int numpts,int points[][2],GrLinePattern *lp);
void GrUsrPatternedPolygon(int numpts,int points[][2],GrLinePattern *lp);

void GrUsrPatternFilledBox(int x1,int y1,int x2,int y2,GrPattern *p);
void GrUsrPatternFilledCircle(int xc,int yc,int r,GrPattern *p);
void GrUsrPatternFilledEllipse(int xc,int yc,int xa,int ya,GrPattern *p);
void GrUsrPatternFilledCircleArc(int xc,int yc,int r,int start,int end,GrPattern *p);
void GrUsrPatternFilledEllipseArc(int xc,int yc,int xa,int ya,int start,int end,GrPattern *p);
void GrUsrPatternFilledConvexPolygon(int numpts,int points[][2],GrPattern *p);
void GrUsrPatternFilledPolygon(int numpts,int points[][2],GrPattern *p);

GrTextOption *GrUsrFindBestFont(int width,int height,int magnify,char *family,GrTextOption *where);
void GrUsrDrawChar(int chr,int x,int y,GrTextOption *opt);
void GrUsrDrawString(char *text,int length,int x,int y,GrTextOption *opt);
void GrUsrTextXY(int x,int y,char *text,int fg,int bg);

Graphics cursors
The library provides support for the creation and usage of an unlimited number of graphics
cursors. An application can use these cursors for any purpose. Cursors always save the area
they occupy before they are drawn. When moved or erased they restore this area. As a
general rule of thumb, an application should erase a cursor before making changes to an
area it occupies and redraw the cursor after finishing the drawing. All cursor and mouse
related declaration are in the include file "mousex.h". Cursors are created with the
'GrBuildCursor' function:
GrCursor *GrBuildCursor(char *data,int w,int h,int xo,int yo,GrColorTableP c);

The 'data', 'w' (=width), 'h' (=height) and 'c' (= color table) arguments are similar to the
arguments of the pixmap building library function: 'GrBuildPixmap'. (See that paragraph for
a more detailed explanation.) The only difference is that the pixmap data is interpreted
slightly differently: any pixel with value zero is taken as a "transparent" pixel, i.e. the
background will show through the cursor pattern at that pixel. A pixmap data byte with value
= 1 will refer to the first color in the table, and so on. The 'xo' (= X offset) and 'yo' (= Y

LIBGRX graphics library user's manual
offset) arguments specify the position (from the top left corner of the cursor pattern) of the
cursor's "hot point". The 'GrCursor' data structure:
typedef struct {
 GrVidRAM cr_andmask; /* cursor bitmap to AND */
 GrVidRAM cr_ormask; /* cursor bitmap to OR */
 GrVidRAM cr_work; /* work area */
 GrVidRAM cr_save; /* screen save area */
 int cr_xcord,cr_ycord; /* cursor position on screen */
 int cr_xsize,cr_ysize; /* cursor size */
 int cr_xoffs,cr_yoffs; /* LU corner to hot point offset */
 int cr_xwork,cr_ywork; /* save/work area sizes */
 int cr_xwpos,cr_ywpos; /* save/work area position on screen */
 int cr_displayed; /* set if displayed */
} GrCursor;

is typically not used (i.e. read or changed) by the application program, it should just pass
pointers to these structures to the appropriate library functions. Other cursor manipulation
functions:
void GrDestroyCursor(GrCursor *cursor);
void GrDisplayCursor(GrCursor *cursor);
void GrEraseCursor(GrCursor *cursor);
void GrMoveCursor(GrCursor *cursor,int x,int y);

Mouse event handling
All mouse services need the presence of a mouse and an installed Microsoft compatible
mouse driver. An application can test whether a mouse is available by calling the function:
int MouseDetect(void);

which will return zero if no mouse (or mouse driver) is present, non-zero otherwise. If the
mouse is present the application may decide if it wants to use the mouse in interrupt-driven
or polled mode. The polled mode is compatible with previous releases of DJGPP and the 256
color graphics library, it uses the mouse driver interrupts (INT 33h) to query the mouse
about its position and buttons. This method is adequate if the program can do the polling in
a tight enough loop. If the program does lengthy computations in the background during
which a "frozen" mouse and the loss of mouse button presses would be disturbing it has to
use the interrupt driven method. For this a patched version of GO32 is needed -- a GO32
version dated after the middle of April 1992 should work. The interrupt driven mouse event
mechanism uses an event queue library (described in the document "EVENTS.DOC") which
stores all user interaction events (mouse presses and keyboard hits) in a queue,
timestamped, in the order of occurrence. The disadvantage of the interrupt-driven mouse
event mechanism is that it may be harder to debug. To select between the two modes the
following function needs to be called:
void MouseEventMode(int use_interrupts);

If the 'use_interrupts' parameter is zero the mouse is put into polled mode (this is the
default), otherwise it will work interrupt-driven. After selecting the mode, the mouse can be
initialized by calling:
void MouseInit(void);

It is not necessary to call this function as the first call the 'MouseGetEvent' (see later)
function will also perform the initialization. However, if the mouse event mode is changed
after using 'MouseGetEvent', a call to 'MouseInit' is the only way to enforce the change.

If the mouse is used in interrupt-driven mode, it is a good practice to call 'MouseUnInit'
before exiting the program. This will restore any interrupt vectors hooked by the program to

LIBGRX graphics library user's manual
their original values.
void MouseUnInit(void);

The mouse can be controlled with the following functions:
void MouseSetSpeed(int speed);
void MouseSetAccel(int thresh,int accel);
void MouseSetLimits(int x1,int y1,int x2,int y2);
void MouseGetLimits(int *x1,int *y1,int *x2,int *y2);
void MouseWarp(int x,int y);

The library calculates the mouse position only from the mouse mickey counters. (To avoid
the limit and 'rounding to the next multiple of eight' problem with the Microsoft mouse driver
when it finds itself in a graphics mode unknown to it.) The 'speed' parameter to the
'MouseSetSpeed' function is used as a divisor, i.e. coordinate changes are obtained by
dividing the mickey counter changes by this value. In high resolution graphics modes the
value of one works just fine, in low resolution modes (320x200 or similar) it is best set the
speed to two or three. (Of course, it also depends on the sensitivity the mouse.) The
'MouseSetAccel' function is used to control the ballistic effect: if a mouse coordinate changes
between two samplings by more than the 'thresh' parameter, the change is multiplied by the
'accel' parameter. NOTE: some mouse drivers perform similar calculations before reporting
the coordinates in mickeys. In this case the acceleration done by the library will be
additional to the one already performed by the mouse driver. The limits of the mouse
movement can be set (passed limits will be clipped to the screen) with 'MouseSetLimits'
(default is the whole screen) and the current limits can be obtained with 'MouseGetLimits'.
'MouseWarp' sets the mouse cursor to the specified position.

Since typical mouse drivers do not know how to draw the cursor in high resolution graphics
modes, the mouse cursor is drawn by the library. The mouse cursor can be set with:
void MouseSetCursor(GrCursor *cursor);
void MouseSetColors(int fg,int bg);

'MouseSetColors' uses an internal arrow pattern, the color 'fg' will be used as the interior of
it and 'bg' will be the border. The current mouse cursor can be obtained with:
GrCursor *MouseGetCursor(void);

The mouse cursor can be displayed/erased with:
void MouseDisplayCursor(void);
void MouseEraseCursor(void);

The mouse cursor can be left permanently displayed. All graphics primitives except for the
few non-clipping functions check for conflicts with the mouse cursor and erase it before the
drawing if necessary. Of course, it may be more efficient to erase the cursor manually before
a long drawing sequence and redraw it after completion. The library provides an alternative
pair of calls for this purpose which will erase the cursor only if it interferes with the drawing:
int MouseBlock(GrContext *c,int x1,int y1,int x2,int y2);
void MouseUnBlock(void);

'MouseBlock' should be passed the context in which the drawing will take place (the usual
convention of NULL meaning the current context is supported) and the limits of the affected
area. It will erase the cursor only if it interferes with the drawing. If it returns a non-zero
value then 'MouseUnBlock' has to be called at the end of the drawing, otherwise it should
not be called.

The library supports (beside the simple cursor drawing) three types of "rubberband"
attached to the mouse cursor. The 'MouseSetCursorMode' function is used to select the

LIBGRX graphics library user's manual
cursor drawing mode.
void MouseSetCursorMode(int mode,...);

The parameter 'mode' can have the following values:
/*
* MOUSE CURSOR modes:
* M_CUR_NORMAL -- just the cursor
* M_CUR_RUBBER -- rectangular rubber band (XOR-d to the screen)
* M_CUR_LINE -- line attached to the cursor
* M_CUR_BOX -- rectangular box dragged by the cursor
*/
#define M_CUR_NORMAL 0
#define M_CUR_RUBBER 1
#define M_CUR_LINE 2
#define M_CUR_BOX 3

'MouseSetCursorMode' takes different parameters depending on the cursor drawing mode
selected. The accepted call formats are:
MouseSetCursorMode(M_CUR_NORMAL);
MouseSetCursorMode(M_CUR_RUBBER,xanchor,yanchor,color);
MouseSetCursorMode(M_CUR_LINE,xanchor,yanchor,color);
MouseSetCursorMode(M_CUR_BOX,dx1,dy1,dx2,dy2,color);

The anchor parameters for the rubberband and rubberline modes specify a fixed screen
location to which the other corner of the primitive is bound. The 'dx1' through 'dy2'
parameters define the offsets of the corners of the dragged box from the hotpoint of the
mouse cursor. The color value passed is always XOR-ed to the screen, i.e. if an application
wants the rubberband to appear in a given color on a given background then it has to pass
the XOR of these two colors to 'MouseSetCursorMode'.

The status of the mouse cursor can be obtained with calling 'MouseCursorIsDisplayed'. This
function will return non-zero if the cursor is displayed, zero if it is erased.
int MouseCursorIsDisplayed(void);

The 'MouseGetEvent' function is used to obtain the next mouse or keyboard event. It takes a
flag with various bits encoding the type of event needed. It returns the event in a
'MouseEvent' structure. The relevant declarations from "mousex.h":
void MouseGetEvent(int flags,MouseEvent *event);

typedef struct {
 int flags; /* flags (see above) */
 int x,y; /* coordinates */
 int buttons; /* button state */
 int key; /* key code from keyboard */
 int kbstat; /* keybd status (ALT, CTRL, etc..) */
 long time; /* time stamp of the event */
} MouseEvent;

The event structure has been extended with a keyboard status word (thus a program can
check for combinations like ALT-<left mousebutton press>) and a time stamp (in DOS clock
ticks since the start of the program) which can be used to check for clicks, double clicks,
etc... The following macros have been defined in "mousex.h" to help in creating the control
flag for 'MouseGetEvent' and decoding the various bits in the event structure:
/*
* MOUSE event flag bits
*/
#define M_MOTION 0x001
#define M_LEFT_DOWN 0x002
#define M_LEFT_UP 0x004

LIBGRX graphics library user's manual
#define M_RIGHT_DOWN 0x008
#define M_RIGHT_UP 0x010
#define M_MIDDLE_DOWN 0x020
#define M_MIDDLE_UP 0x040
#define M_BUTTON_DOWN (M_LEFT_DOWN | M_MIDDLE_DOWN | M_RIGHT_DOWN)
#define M_BUTTON_UP (M_LEFT_UP | M_MIDDLE_UP | M_RIGHT_UP)
#define M_BUTTON_CHANGE (M_BUTTON_UP | M_BUTTON_DOWN)

/*
* MOUSE button status bits
*/
#define M_LEFT 1
#define M_RIGHT 2
#define M_MIDDLE 4

/*
* Other bits and combinations
*/
#define M_KEYPRESS 0x080 /* keypress */
#define M_POLL 0x100 /* do not wait for the event */
#define M_NOPAINT 0x200
#define M_EVENT (M_MOTION | M_KEYPRESS | M_BUTTON_DOWN | M_BUTTON_UP)

/*
* KEYBOARD status word bits
*/
#define KB_RIGHTSHIFT 0x01 /* right shift key depressed */
#define KB_LEFTSHIFT 0x02 /* left shift key depressed */
#define KB_CTRL 0x04 /* CTRL depressed */
#define KB_ALT 0x08 /* ALT depressed */
#define KB_SCROLLOCK 0x10 /* SCROLL LOCK active */
#define KB_NUMLOCK 0x20 /* NUM LOCK active */
#define KB_CAPSLOCK 0x40 /* CAPS LOCK active */
#define KB_INSERT 0x80 /* INSERT state active */

#define KB_SHIFT (KB_LEFTSHIFT | KB_RIGHTSHIFT)

'MouseGetEvent' will display the mouse cursor if it was previously erased and the
'M_NOPAINT' bit is not set in the flag passed to it. In this case it will also erase the cursor
after an event has been obtained.

NOTE: some of the mouse event constants have different values than in the original DJGPP
graphics library. This change was necessary to better follow the mouse driver conventions
for assigning bits with similar functions.

The generation of mouse and keyboard events can be individually enabled or disabled (by
passing a non-zero or zero, respectively, value in the corresponding 'enable_XX' parameter)
by calling:
void MouseEventEnable(int enable_kb,int enable_ms);

